题目内容

已知三棱柱ABC-A1B1C1的各条棱长都相等,且CC1⊥底面ABC,则异面直线BC1与AC所成角的余弦值为______.
连接A1B,设该三棱柱的棱长为1,
∵三棱柱ABC-A1B1C1中,ACA1C1
∴∠A1C1B(或其补角)就是异面直线BC1与AC所成的角
∵CC1⊥底面ABC,
∴三棱柱ABC-A1B1C1是直三棱柱,可得四边形B1C1CB是矩形
∵BC=CC1=1,∴BC1=
2
,同理可得A1B=
2

△A1C1B中,由余弦定理得:cos∠A1C1B=
1+2-2
2×1×
2
=
2
4

即异面直线BC1与AC所成角的余弦值为
2
4

故答案为:
2
4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网