题目内容
【题目】如图,菱形的对角线与交于点O,,点分别在上,,交于点. 将沿折到△的位置,.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)详见解析;(2).
【解析】
(1)根据折叠前后关系可证,再用勾股定理证,即可证得结论;
(2)建立空间坐标系,求出平面的法向量,找出平面的法向量,即可求出结果.
(I)由已知得,,
又由得,故.
因此,从而
由,,
得.
由得.
所以,.
于是,故.
又,而,
所以平面.
(II)如图,以为坐标原点,的方向为轴的正方向,
建立空间直角坐标系,则,,
,,,
,.
设是平面的法向量,
则,即,
所以可以取
因菱形ABCD中有,
又由(1)知
所以是平面的法向量,
设二面角为,由于为锐角,
于是 .
因此二面角的余弦值是.
练习册系列答案
相关题目
【题目】某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额(万元)的数据如下:
加盟店个数(个) | 1 | 2 | 3 | 4 | 5 |
单店日平均营业额(万元) | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求单店日平均营业额(万元)与所在地区加盟店个数(个)的线性回归方程;
(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数的所有可能取值;
(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.
(参考数据及公式:,,线性回归方程,其中,.)