题目内容
【题目】设是定义在R上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中k>0.若在区间(0,9]上,关于x的方程有8个不同的实数根,则k的取值范围是_____.
【答案】.
【解析】
分别考查函数和函数图像的性质,考查临界条件确定k的取值范围即可.
当时,即
又为奇函数,其图象关于原点对称,其周期为4,如图,函数与的图象,要使在(0,9]上有8个实根,只需二者图象有8个交点即可.
当时,函数与的图象有2个交点;
当时,的图象为恒过点(-2,0)的直线,只需函数与的图象有6个交点.当与图象相切时,圆心(1,0)到直线的距离为1,即,得,函数与的图象有3个交点;当过点(1,1)时,函数与的图象有6个交点,此时,得.
综上可知,满足在(0,9]上有8个实根的k的取值范围为.
练习册系列答案
相关题目