题目内容

【题目】已知函数,若函数有三个不同的零点(其中),则的取值范围为__________

【答案】

【解析】如图:

,作出函数图象如图所示

,作出函数图象如图所示

,由有三个不同的零点

,如图

为满足有三个零点,如图可得

点睛:本题考查了函数零点问题,先由导数求出两个函数的单调性,继而画出函数图像,再由函数的零点个数确定参量取值范围,将问题转化为函数的两根问题来求解,本题需要化归转化,函数的思想,零点问题等较为综合,有很大难度。

型】填空
束】
17

【题目】已知等比数列的前项和为,且满足.

(1)求数列的通项公式;

(2)若数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析: 法一:根据即可求出数列的通项公式;法二:根据等比数列的前项和公式和已知条件求出公比和首项的值,即可求出数列的通项公式; 根据对数的运算性质求出,代入即可求出的数列的通项公式,利用裂项法求出数列的前项和

解析:(1)

法一:由

时, ,即

,当时符合上式,所以通项公式为.

法二:由

从而有

所以等比数列公比,首项,因此通项公式为.

(2)由(1)可得

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网