题目内容
【题目】已知函数,,若函数有三个不同的零点,,(其中),则的取值范围为__________.
【答案】
【解析】如图:
,,作出函数图象如图所示
,,作出函数图象如图所示
,由有三个不同的零点
,如图
令
得
为满足有三个零点,如图可得
,
点睛:本题考查了函数零点问题,先由导数求出两个函数的单调性,继而画出函数图像,再由函数的零点个数确定参量取值范围,将问题转化为函数的两根问题来求解,本题需要化归转化,函数的思想,零点问题等较为综合,有很大难度。
【题型】填空题
【结束】
17
【题目】已知等比数列的前项和为,且满足.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.
【答案】(1);(2)
【解析】试题分析: 法一:根据即可求出数列的通项公式;法二:根据等比数列的前项和公式和已知条件求出公比和首项的值,即可求出数列的通项公式; 根据对数的运算性质求出,代入即可求出的数列的通项公式,利用裂项法求出数列的前项和
解析:(1)
法一:由得,
当时, ,即,
又,当时符合上式,所以通项公式为.
法二:由得,
从而有,
所以等比数列公比,首项,因此通项公式为.
(2)由(1)可得,
,
.
练习册系列答案
相关题目