题目内容
【题目】已知(e为目然对数的底数).
(1)设函数,求函数的最小值;
(2)若函数在上为增函数,求实数的取值范围.
【答案】(1) ;(2).
【解析】
(1)表示出g(x),利用导数可求得其最小值;
(2)原问题等价于a≥lnx﹣ex+1在[1,+∞)上恒成立,令h(x)=lnx﹣ex+1(x≥1),求导后可得函数h(x)在[1,+∞)上单调递减,由a≥h(x)max,进而求得答案.
(1),函数g(x)的定义域为(0,+∞),,
令g′(x)>0,解得x>1,故函数g(x)在(1,+∞)单调递增,令g′(x)<0,解得0<x<1,故函数g(x)在(0,1)单调递减,
∴g(x)min=g(1)=e﹣1+a;
(2)由题意,f′(x)=ex﹣lnx+a﹣1≥0在[1,+∞)上恒成立,即a≥lnx﹣ex+1在[1,+∞)上恒成立,
令h(x)=lnx﹣ex+1(x≥1),则,显然h′(x)为[1,+∞)的减函数,
∴h′(x)≤h′(1)=1﹣e<0,
∴函数h(x)在[1,+∞)上单调递减,
∴h(x)max=h(1)=1﹣e,则a≥1﹣e,即实数a的取值范围为[1﹣e,+∞).
【题目】已知某海滨浴场海浪的高度y(米)是时间t的(0≤t≤24,单位:小时)函数,记作y=f(t),下表是某日各时的浪高数据:
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b的图象.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?