题目内容
设数列{an}的各项都是正数,且对任意n∈N*,都有
+…+
=
,记Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n-1λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414129537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414145405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414160438.png)
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n-1λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.
(1)an=n(2)存在整数λ=-1
(1)在已知式中,当n=1时,
=
,∵a1>0,∴a1=1,当n≥2时,
+
+
+…+
=
,①
+…+
=
,②
①-②得,
=
-
=(Sn-Sn-1)(Sn+Sn-1),
∵an>0,∴
=Sn+Sn-1=2Sn-an,③
∵a1=1适合上式
当n≥2时,
=2Sn-1-an-1,④
③-④得
-
=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1.
∵an+an-1>0,∴an-an-1=1,∴数列{an}是等差数列,首项为1,公差为1,可得an=n.
(2)由(1)知:bn=3n+(-1)n-1λ·2n
∴bn+1-bn=[3n+1+(-1)nλ·2n+1]-[3n+(-1)n-1λ·2n]=2·3n-3λ(-1)n-1·2n>0
∴(-1)n-1·λ<
n-1,⑤
当n=2k-1,k=1,2,3,…时,⑤式即为λ<
2k-2,⑥
依题意,⑥式对k=1,2,3,…都成立,∴λ<1,
当n=2k,k=1,2,3,…时,⑤式即为λ>-
2k-1,⑦
依题意,⑦式对k=1,2,3,…都成立,
∴λ>-
,∴-
<λ<1,又λ≠0,∴存在整数λ=-1,使得对任意n∈N*,都有bn+1>bn.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414160373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414176372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414160373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414207402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414223384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414145405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414160438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414129537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414316446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414332474.png)
①-②得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414145405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414503436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414535470.png)
∵an>0,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414550398.png)
∵a1=1适合上式
当n≥2时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414675445.png)
③-④得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414550398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414675445.png)
∵an+an-1>0,∴an-an-1=1,∴数列{an}是等差数列,首项为1,公差为1,可得an=n.
(2)由(1)知:bn=3n+(-1)n-1λ·2n
∴bn+1-bn=[3n+1+(-1)nλ·2n+1]-[3n+(-1)n-1λ·2n]=2·3n-3λ(-1)n-1·2n>0
∴(-1)n-1·λ<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414862473.png)
当n=2k-1,k=1,2,3,…时,⑤式即为λ<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414862473.png)
依题意,⑥式对k=1,2,3,…都成立,∴λ<1,
当n=2k,k=1,2,3,…时,⑤式即为λ>-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414862473.png)
依题意,⑦式对k=1,2,3,…都成立,
∴λ>-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414925388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034414925388.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目