题目内容
已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式.
(2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得
对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,说明理由.
(1)求数列{an}的通项公式.
(2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得
对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,说明理由.
(1)2n(2)存在
(1)由已知an=Sn-1+2, ①
得an+1=Sn+2. ②
②-①,得an+1-an=Sn-Sn-1(n≥2),
∴an+1=2an(n≥2).
又a1=2,∴a2=a1+2=4=2a1,
∴an+1=2an(n=1,2,3,…),
∴数列{an}是一个以2为首项,2为公比的等比数列,
∴an=2·2n-1=2n,n∈N*.
(2)bn===,∴Tn=bn+1+bn+2+…+b2n=++…+,Tn+1=bn+2+bn+3+…+b2(n+1)=++…+++.
∴Tn+1-Tn=+-==.
∵n是正整数,∴Tn+1-Tn>0,即Tn+1>Tn.
∴数列{Tn}是一个单调递增数列.又T1=b2=,∴Tn≥T1=,
要使Tn>恒成立,则>,即k<6.又k是正整数,故存在最大正整数k=5使Tn>恒成立.
得an+1=Sn+2. ②
②-①,得an+1-an=Sn-Sn-1(n≥2),
∴an+1=2an(n≥2).
又a1=2,∴a2=a1+2=4=2a1,
∴an+1=2an(n=1,2,3,…),
∴数列{an}是一个以2为首项,2为公比的等比数列,
∴an=2·2n-1=2n,n∈N*.
(2)bn===,∴Tn=bn+1+bn+2+…+b2n=++…+,Tn+1=bn+2+bn+3+…+b2(n+1)=++…+++.
∴Tn+1-Tn=+-==.
∵n是正整数,∴Tn+1-Tn>0,即Tn+1>Tn.
∴数列{Tn}是一个单调递增数列.又T1=b2=,∴Tn≥T1=,
要使Tn>恒成立,则>,即k<6.又k是正整数,故存在最大正整数k=5使Tn>恒成立.
练习册系列答案
相关题目