题目内容
5.数列5,9,13,…的一个通项公式为( )A. | an=5+4n | B. | an=5-4n | C. | an=1+4n | D. | an=1-4n |
分析 由数列的前几项判断数列是一个等差数列,进行求解即可.
解答 解:法1:∵9=5+4,13=9+4=5+2×4,
…
∴an=5+4(n-1)=1+4n,
法2:(公式法)∵9-5=4,13-9=4,
∴数列是一个以5为首项,4为公差的等差数列,则an=5+4(n-1)=1+4n,
故选:C
点评 本题主要考查数列通项公式的求解,比较基础.
练习册系列答案
相关题目
16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了4次试验,得到数据如下:
(Ⅰ)在给定的坐标系中画出表中数据的散点图;
(Ⅱ)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅲ)试预测加工10个零件需要的时间.
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(Ⅱ)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅲ)试预测加工10个零件需要的时间.
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.
17.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为2,则原梯形的面积为( )
A. | 2 | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |