题目内容
【题目】如图,在棱长为3的正方体中,.
求两条异面直线与所成角的余弦值;
求直线与平面所成角的正弦值.
【答案】(1)(2)
【解析】
(1)以D为原点,建立空间直角坐标系D-xyz,则我们易求出已知中,各点的坐标,进而求出向量,的坐标.代入向量夹角公式,结合异面直线夹角公式,即可得到答案.
(2)设出平面BED1F的一个法向量为,根据法向量与平面内任一向量垂直,数量积为0,构造方程组,求出平面BED1F的法向量为的坐标,代入线面夹角向量公式,即可求出答案.
解:(1)以D为原点,建立空间直角坐标系D-xyz如图所示:
则A(3,0,0),C1=(0,3,3),D1=(0,0,3),E(3,0,2)
∴=(-3,3,3),=(3,0,-1)
∴cosθ===-
则两条异面直线AC1与D1E所成角的余弦值为
(2)B(3,3,0),=(0,-3,2),=(3,0,-1)
设平面BED1F的一个法向量为=(x,y,z)
由得
令x=1,则=(1,2,3)
则直线AC1与平面BED1F所成角的正弦值为
||==
练习册系列答案
相关题目