题目内容
(本小题满分12分)函数是R上的偶函数,且当时,函数的解析式为(1)求的值; (2)求当时,函数的解析式;(3)用定义证明在上是减函数;
(1)1(2)=(3)证明略
解析
已知f满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,求f(72)的值.
(本小题满分12分)已知f(x)、g(x)分别为奇函数、偶函数,且f(x)+g(x)=2x+2x,求f(x)、g(x)的解析式.
已知,若能表示成一个奇函数和一个偶函数的和.(Ⅰ)求和的解析式;(Ⅱ)若和在区间上都是减函数,求的取值范围.
(本小题满分14分)已知函数和的图象关于原点对称,且. (Ⅰ)求函数的解析式; (Ⅱ)解不等式; (Ⅲ)若在上是增函数,求实数的取值范围.
(本题满分15分)已知:函数(a、b、c是常数)是奇函数,且满足.(1)求a、b、c的值;(2)试判断函数f(x)在区间(0,)上的单调性并证明.
随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数,每人每年可创利10万元.据评估,在经营条件不变的前提下,若裁员x人,则留岗职员每人每年多创利0.1x万元,但公司需付下岗职员每人每年4万元的生活费,并且该公司正常运转情况下,所裁人数不超过50人,为获得最大的经济效益,该公司应裁员多少人?
(本小题满分14分)已知函数(1)当时,求函数的单调区间;(2)求函数在区间上的最小值.
(本大题满分12分)某公司预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比。若每批购入400台,则全年需用去运费和保管费43600元。现在全年只有24000元资金用于支付运费和保管费,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论并说明理由