题目内容

(12分)有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长。
(1)请你求出这种切割、焊接而成的长方体容器的最大容积
(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积
(1)当时,取最大值 ;
(2)重新设计方案如下:

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求.
本试题主要是考查了导数在研究函数中的运用。求解最值问题。
(1)因为设切去正方形边长为x,则焊接成的长方体的底面边长为,高为x
,然后求解导数来判定单调性得到极值,进而求解最值。
(2)在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求
(1)设切去正方形边长为x,则焊接成的长方体的底面边长为,高为x
                          ……(2分)
.                                ……(3分)
时,是关于x的增函数;
时,是关于x的减函数.
∴当时,取最大值                                       ……(7分)
(2)重新设计方案如下:

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求.……(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网