题目内容

四面体的六条棱中,有五条棱长都等于a.
(1)求该四面体的体积的最大值;
(2)当四面体的体积最大时,求其表面积.
(1)a3(2)a2
(1)如图,在四面体ABCD中,设AB=BC=CD=AC=BD=a,AD=x,取AD的中点为P,BC的中点为E,连结BP、EP、CP.得到AD⊥平面BPC,

∴VA-BCD=VA-BPC+VD-BPC·S△BPC·AP+S△BPC·PD=·S△BPC·AD=··a·a3(当且仅当x=a时取等号).
∴该四面体的体积的最大值为a3.
(2)由(1)知,△ABC和△BCD都是边长为a的正三角形,△ABD和△ACD是全等的等腰三角形,其腰长为a,底边长为a,
∴S=2×a2+2××a2a2a2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网