题目内容

6.设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.
(1)求数列{an}的通项公式an及前n项的和Sn
(2)设数列{$\frac{1}{{{a_n}{a_{n+1}}}$}的前n项和为Tn,证明:Tn<$\frac{1}{4}$;
(3)是否存在自然数n,使得s1+$\frac{s_2}{2}+\frac{s_3}{3}$+…+$\frac{s_n}{n}$-(n-1)2=2009?若存在,求出n的值;若不存在,说明理由.

分析 (1)设等差数列{an}的公差为d,从而可得$\left\{\begin{array}{l}{a_1}+2d=9\\ 6{a_1}+15d=66\end{array}\right.$,从而解得;
(2)化简${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+$…$+\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{4}[(1-\frac{1}{5})+(\frac{1}{5}-\frac{1}{9})+…+(\frac{1}{4n-3}-\frac{1}{4n+1}$)],从而证明;
(3)由sn=2n2-n得$\frac{{s}_{n}}{n}$=2n-1,从而可得2n-1=2009,从而解得.

解答 解:(1)设等差数列{an}的公差为d,
由a3=9,S6=66可得$\left\{\begin{array}{l}{a_1}+2d=9\\ 6{a_1}+15d=66\end{array}\right.$,
解得a1=1,d=4;
因此,an=4n-3,${s_n}=\frac{{({a_1}+{a_n})n}}{2}=2{n^2}-n$;
(2)证明:${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+$…$+\frac{1}{{{a_n}{a_{n+1}}}}$
=$\frac{1}{1×5}+\frac{1}{5×9}+$…$+\frac{1}{(4n-3)(4n+1)}$
=$\frac{1}{4}[(1-\frac{1}{5})+(\frac{1}{5}-\frac{1}{9})+…+(\frac{1}{4n-3}-\frac{1}{4n+1}$)]
=$\frac{1}{4}(1-\frac{1}{4n+1})=\frac{n}{4n+1}<\frac{n}{4n}=\frac{1}{4}$;
(3)由sn=2n2-n得$\frac{{s}_{n}}{n}$=2n-1,
s1+$\frac{s_2}{2}+\frac{s_3}{3}$+…+$\frac{s_n}{n}$-(n-1)2
=1+3+5+…+(2n-1)-(n-1)2
=2n-1=2009,
解得,n=1005;
故存在满足条件的自然数n=1005.

点评 本题考查了数列的通项公式及前n项和公式的求法,同时考查了裂项求和法的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网