题目内容
【题目】在平面直角坐标系中,已知矩形的长为2,宽为1,.边分别在轴.轴的正半轴上,点与坐标原点重合(如图所示)。将矩形折叠,使点落在线段上。
(1)若折痕所在直线的斜率为,试求折痕所在直线的方程;
(2)当时,求折痕长的最大值;
(3)当时,折痕为线段,设,试求的最大值。
【答案】(1);(2);(3)
【解析】
(1)对k=0,分类讨论,将矩形折叠后点落在线段上的点记为,先求G的坐标,再求折痕所在的直线与的交点坐标,写出直线的点斜式方程.(2) 先求出折痕直线交于点,交轴于,再求的最大值,即得折痕长的最大值.(3)先求得,再求t的表达式和其最大值.
(1) ①当时,此时点与点重合, 折痕所在的直线方程
②当时,将矩形折叠后点落在线段上的点记为,
所以与关于折痕所在的直线对称,
有
故点坐标为,
从而折痕所在的直线与的交点坐标(线段的中点)为
折痕所在的直线方程,即
由①②得折痕所在的直线方程为:
(2)当时,折痕的长为2;
当时,折痕直线交于点,交轴于
∵
∴折痕长度的最大值为。
而 ,故折痕长度的最大值为
(3)当时,折痕直线交于,交轴于
∵ ∴
∵ ∴(当且仅当时取“=”号)
∴当时,取最大值,的最大值是。
【题目】收入是衡量一个地区经济发展水平的重要标志之一,影响收入的因素有很多,为分析学历对收入的作用,某地区调查机构欲对本地区进行了此项调查.
(1)你认为应采用何种抽样方法进行调查?
(2)经调查得到本科学历月均收入条形图如图,试估算本科学历月均收入的值?
(3)设学年为,令,月均收入为,已知调查机构调查结果如下表
学历 (年) | 小学 | 初中 | 高中 | 本科 | 硕士生 | 博士生 |
6 | 9 | 12 | 16 | 19 | 22 | |
2.0 | 2.7 | 3.7 | 5.8 | 7.8 | ||
2210 | 2410 | 2910 | 6960 |
从散点图中可看出和的关系可以近似看成是一次函数图像. 若回归直线方程为,试预测博士生的平均月收入.