题目内容

【题目】在平面直角坐标系中,已知矩形的长为2,宽为1,.边分别在.轴的正半轴上,点与坐标原点重合(如图所示)。将矩形折叠,使点落在线段上。

(1)若折痕所在直线的斜率为,试求折痕所在直线的方程;

(2)当时,求折痕长的最大值;

(3)当时,折痕为线段,设,试求的最大值。

【答案】(1);(2);(3)

【解析】

(1)k=0,分类讨论,将矩形折叠后点落在线段上的点记为先求G的坐标,再求折痕所在的直线与的交点坐标,写出直线的点斜式方程.(2) 先求出折痕直线交于点,交轴于,再求的最大值,即得折痕长的最大值.(3)先求得,再求t的表达式和其最大值.

(1) ①当时,此时点与点重合, 折痕所在的直线方程

②当时,将矩形折叠后点落在线段上的点记为

所以关于折痕所在的直线对称,

点坐标为

从而折痕所在的直线与的交点坐标(线段的中点)为

折痕所在的直线方程,即

由①②得折痕所在的直线方程为:

(2)当时,折痕的长为2;

时,折痕直线交于点,交轴于

∴折痕长度的最大值为

,故折痕长度的最大值为

(3)当时,折痕直线交,交轴于

(当且仅当时取“=”号)

∴当时,取最大值,的最大值是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网