题目内容
【题目】如图,在平行四边形中,,四边形为直角梯形,∥,,, 平面平面.
(1)求证:;
(2)求平面与平面所成锐二面角的余弦值.
【答案】(1)见解析;(2).
【解析】【试题分析】(1)依据题设条件及勾股定理先证线垂直,借助题设条件,运用性质定理进行推证;(2)建立空间直角坐标系,借助向量的坐标形式的运算及数量积公式求出两平面所成锐角二面角的余弦值:
(1)在△ABC中,所以,所以,所以,
又因为平面ABCD⊥平面ABEF,平面ABCD平面ABEF=AB,AC平面ABCD,所以平面ABEF..
(2) 如图建立空间直角坐标系,则A(0,0,0),B(1,0,0),,D(,E(1,2,0),F(0,3,0),是平面ABCD的一个法向量.
设平面DEF的法向量为,又,,
,则,得,取则。
故是平面DEF的一个法向量.设平面ABCD与平面DEF所成的锐二面角为,则.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻的2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求关于的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(注:)