题目内容

11.等差数列的前三项依次为a-1,a+1,2a+3,那么这个等差数列的通项公式为(  )
A.an=2n-4B.an=2n-3C.an=2n-1D.an=2n+1

分析 利用等差中项可知2(a+1)=(a-1)+(2a+3),进而计算可得结论.

解答 解:由题可知2(a+1)=(a-1)+(2a+3),
解得:a=0,
∴该数列{an}是以-1为首项、2为公差的等差数列,
∴an=-1+2(n-1)=2n-3,
故选:B.

点评 本题考查等差中项的性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网