题目内容
【题目】已知圆N经过点A(3,1),B(﹣1,3),且它的圆心在直线3x﹣y﹣2=0上.
(1)求圆N的方程;
(2)若点D为圆N上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.
【答案】(1)(x﹣2)2+(y﹣4)2=10(2)
【解析】
试题分析:(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M的坐标,利用中点得到点D坐标,代入圆的方程整理化简得到的中点M的轨迹方程
试题解析:(Ⅰ)由已知可设圆心N(a,3a﹣2),又由已知得|NA|=|NB|, 从而有,解得:a=2.
于是圆N的圆心N(2,4),半径
所以,圆N的方程为(x﹣2)2+(y﹣4)2=10.(6分)
(2)设M(x,y),D(x1,y1),则由C(3,0)及M为线段CD的中点得:,解得:. 又点D在圆N:(x﹣2)2+(y﹣4)2=10上,所以有(2x﹣3﹣2)2+(2y﹣4)2=10,化简得:
故所求的轨迹方程为
练习册系列答案
相关题目