题目内容
【题目】如图,在三棱锥中,为正三角形,为棱的中点,,,平面平面
(1)求证:平面平面;
(2)若是棱上一点,与平面所成角的正弦值为,求二面角的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)先根据平面平面,得出,结合条件得出平面,从而可得.
(2)建立空间直角坐标系,结合与平面所成角的正弦值为得出的坐标,然后利用法向量可求.
(1)因为为正三角形,为棱的中点,所以,
又平面平面,且平面平面,
所以平面,
所以,又,且,
所以平面.
又平面,
所以平面平面.
(2)作中点,连,由(1)及可知平面,
以为坐标原点,分别为轴,过且平行于的方向为轴,如图,建立空间直角坐标系.
设,
则,
,
设,则,,
设平面的法向量为,
因为与平面所成角的正弦值为,
所以,即,解得,
即为的中点,则
设平面的法向量为,则
,即,
取.
设平面的法向量为,则,
则二面角的余弦值为,
故.
【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据(单位:十亿元).绘制如下表1:
表1
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
销售额 | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根据以上数据绘制散点图,如图所示.
把销售超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率.
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为,.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一年度未发生有责任道路交通事故 | 下浮10% | |
上两年度未发生有责任道路交通事故 | 下浮 | |
上三年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮10% | |
上一个年度发生有责任交通死亡事故 | 上浮30% | |
某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了
类型 | A1 | A2 | A3 | A4 | A5 | A6 |
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.