题目内容

1.已知数列{an}的前n项和记为Sn,a1=2,an+1=Sn+n,等差数列{bn}的各项为正,其前n项和为Tn,且T3=9,又a1+b1,a2+b2,a3+b3成等比数列.
(1)求{an},{bn}的通项公式;
(2)求证:当n≥2时,$\frac{1}{{b}_{1}^{2}}+\frac{1}{{b}_{2}^{2}}+…+\frac{1}{{b}_{n}^{2}}<\frac{4}{5}$.

分析 (1)由a1=2,an+1=Sn+n,当n≥2时,an=Sn-1+(n-1),可得an+1-an=an+1,变形为an+1+1=2(an+1),由于a1+1=3,a2+1=4.可得数列{an+1}从第二项等比数列,即可得出an.设等差数列{bn}的公差为d>0,由T3=9,又a1+b1,a2+b2,a3+b3成等比数列,可得3b1+3d=9,$({a}_{2}+{b}_{2})^{2}$=(a1+b1)(a3+b3),代入解出即可.
(2)当n≥2时,$\frac{1}{{b}_{n}^{2}}$=$\frac{1}{(2n-1)^{2}}$<$\frac{1}{4{n}^{2}-4n}$=$\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$.利用“裂项求和”即可得出.

解答 (1)解:∵a1=2,an+1=Sn+n,
∴当n=1时,a2=a1+1=3.
当n≥2时,an=Sn-1+(n-1),可得an+1-an=an+1,
变形为an+1+1=2(an+1),
由于a1+1=3,a2+1=4.
∴数列{an+1}从第二项等比数列,a2+1=4,公比为2,
∴n≥2时,an+1=4×2n-2,∴an=2n-1.
∴an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n}-1,n≥2}\end{array}\right.$.
设等差数列{bn}的公差为d>0,∵T3=9,又a1+b1,a2+b2,a3+b3成等比数列,
∴3b1+3d=9,$({a}_{2}+{b}_{2})^{2}$=(a1+b1)(a3+b3),即$(3+{b}_{1}+d)^{2}$=(2+b1)(7+b1+2d),
联立解得:d2+5d-14=0,d>0.
解得d=2,b1=1.
∴bn=1+2(n-1)=2n-1.
(2)证明:当n≥2时,$\frac{1}{{b}_{n}^{2}}$=$\frac{1}{(2n-1)^{2}}$=$\frac{1}{4{n}^{2}-4n+1}$<$\frac{1}{4{n}^{2}-4n}$=$\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$.
∴$\frac{1}{{b}_{1}^{2}}+\frac{1}{{b}_{2}^{2}}$+…+$\frac{1}{{b}_{n}^{2}}$<1+$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n-1}-\frac{1}{n})]$=1+$\frac{1}{4}(1-\frac{1}{n})$$<\frac{5}{4}$.
∴$\frac{1}{{b}_{1}^{2}}+\frac{1}{{b}_{2}^{2}}$+…+$\frac{1}{{b}_{n}^{2}}$$<\frac{5}{4}$.

点评 本题考查了递推关系、“裂项求和”方法、等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网