题目内容
【题目】甲乙两地生产某种产品,他们可以调出的数量分别为300吨、750吨.A,B,C三地需要该产品数量分别为200吨,450吨,400吨,甲地运往A,B,C三地的费用分别为6元/吨、3元/吨,5元/吨,乙地运往A,B,C三地的费用分别为5元/吨,9元/吨,6元/吨,问怎样调运,才能使总运费最小?
【答案】甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小
【解析】
设从甲到A调运吨,从甲到B调运吨,则由题设可得 ,总的费用为,利用线性规划可求目标函数的最小值.
设从甲到A调运吨,从甲到B调运吨,从甲到C调运吨,则从乙到A调运吨,从乙到B调运吨,从乙到C调运吨,
设调运的总费用为元,则
.
由已知得约束条件为,可行域如图所示,
平移直线可得最优解为.
甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小.
练习册系列答案
相关题目
【题目】近年电子商务蓬勃发展,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.70,对快递的满意率为0.60,商品和快递都满意的交易为80
(Ⅰ)根据已知条件完成下面的列联表,并回答能否有99%认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 | 80 | ||
对商品不满意 | |||
合计 | 200 |
(Ⅱ)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和快递都满意的次数为随机变量,求的分布列和数学期望.
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |