题目内容

15.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f′(x)-g(x)(f′(x)为函数f(x)的导函数)在[a,b]上有且只有两个不同的零点,则称f(x)是g(x)在[a,b]上的“关联函数”.若f(x)=$\frac{x^3}{3}-\frac{{3{x^2}}}{2}$+4x是g(x)=2x+m在[0,3]上的“关联函数”,则实数m的取值范围是(  )
A.$({-\frac{9}{4},-2}]$B.[-1,0]C.(-∞,-2]D.$({-\frac{9}{4},+∞})$

分析 先对f(x)求导,由题意可得h(x)=f′(x)-g(x)=x2-5x+4-m 在[0,3]上有两个不同的零点,故有$\left\{\begin{array}{l}{h(0)≥0}\\{h(3)≥0}\\{h(\frac{5}{2})<0}\end{array}\right.$,由此求得m的取值范围.

解答 解:f′(x)=x2-3x+4,
∵f(x)与g(x)在[0,3]上是“关联函数”,
故函数y=h(x)=f′(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点,
故有$\left\{\begin{array}{l}{h(0)≥0}\\{h(3)≥0}\\{h(\frac{5}{2})<0}\end{array}\right.$,即  $\left\{\begin{array}{l}{4-m≥0}\\{-2-m≥0}\\{\frac{25}{4}-\frac{25}{2}+4-m<0}\end{array}\right.$,解得-$\frac{9}{2}$<m≤-2,
故选:A.

点评 本题考查导数的求导法则,函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网