题目内容
15.二进制数1011(2)化为十进制数的结果为( )A. | 11 | B. | 9 | C. | 19 | D. | 13 |
分析 用每位数字乘以权重,累加后即可得到结果.
解答 解:1011(2)=1×23+0×22+1×21+1×10=11.
故选:A.
点评 本题主要考查了2进制数和10进制数的转化,属于基础题.
练习册系列答案
相关题目
6.某校本学期迎来了某师范大学数学系甲、乙、丙、丁共4名实习教师,若将这4名实习教师分配到高一年级编号为1,2,3,4的4个班级实习,每班安排1名实习教师,且甲教师要安排在1班或2班,则不同的分配方案有( )
A. | 6种 | B. | 9种 | C. | 12种 | D. | 24种 |
20.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-π<φ<π)的部分图象如图所示,为了得到g(x)=$\sqrt{3}$cos(ωx+$\frac{φ}{2}$)的图象,只需将f(x)的图象( )
A. | 向左平移$\frac{5π}{12}$个单位长度 | B. | 向左平移$\frac{5π}{6}$个单位长度 | ||
C. | 向右平移$\frac{5π}{12}$个单位长度 | D. | 向右平移$\frac{5π}{6}$个单位长度 |
7.某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:
(1)求这5天的发芽数的方差;
(2)根据表中的数据可知发芽数y(颗)与温差x(℃)呈线性相关,请求出发芽数y关于温差x的线性回归方程$\widehat{y}$=bx+$\widehat{a}$.
(3)若4月15日的温差为15℃,试用(2)中的回归方程估测当天50颗稻籽浸泡后的发芽数.(精确到整数部分)
(参考公式:回归直线方程式=bx+$\widehat{a}$.其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\overline{a}=\overline{y}-b\overline{x}$)
日 期 | 4月10日 | 4月11日 | 4月12日 | 4月13日 | 4月14日 |
温 差x(℃) | 10 | 12 | 13 | 14 | 11 |
发芽数y(颗) | 11 | 13 | 14 | 16 | 12 |
(2)根据表中的数据可知发芽数y(颗)与温差x(℃)呈线性相关,请求出发芽数y关于温差x的线性回归方程$\widehat{y}$=bx+$\widehat{a}$.
(3)若4月15日的温差为15℃,试用(2)中的回归方程估测当天50颗稻籽浸泡后的发芽数.(精确到整数部分)
(参考公式:回归直线方程式=bx+$\widehat{a}$.其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\overline{a}=\overline{y}-b\overline{x}$)
5.已知函数y=3|x|在区间[a,b]上的值域为[1,9],则a2+b2-2a的取值范围是( )
A. | {4,12} | B. | {8,12} | C. | [4,12] | D. | [8,12] |