题目内容
过双曲线左焦点,倾斜角为的直线交双曲线右支于点,若线段的中点在轴上,则此双曲线的离心率为( )
A. | B. | C.3 | D. |
D
解析试题分析:由于线段PF1的中点M落在y轴上,连接MF2,则|MF1|=|MF2|="|PM|=" |PF1|⇒△PF1F2为直角三角形,△PMF2为等边三角形,于是|PF1|-|PF2|=|MF1|=2a,|F1F2|="2c=" |MF1|=2a⇒c= a,由c2=a2+b2可求得b= a,于是 双曲线的渐近线方程可求。解:连接MF2,由过点 PF1作倾斜角为30°,线段PF1的中点M落在y轴上得:|MF1|=|MF2|═|PM|=|PF1|,∴△PMF2为等边三角形,△PF1F2为直角三角形,∵是|PF1|-|PF2|=|MF1|=2a,|F1F2|=2c=|MF1|=2a,∴c=a,又c2=a2+b2,∴3a2=a2+b2,∴b=a,∴双曲线的离心率为故选 D.
考点:双曲线定义的灵活应用
点评:本题考查直线与圆锥曲线的位置关系,关键是对双曲线定义的灵活应用及对三角形△PMF2为等边三角形,△PF1F2为直角三角形的分析与应用,属于难题.
练习册系列答案
相关题目
已知,则双曲线与的( )
A.实轴长相等 | B.虚轴长相等 | C.焦距相等 | D.离心率相等 |
双曲线过其左焦点F1作x轴的垂线交双曲线于A,B两点,若双曲线右顶点在以AB为直径的圆内,则双曲线离心率的取值范围为
A.(2,+∞) | B.(1,2) |
C.(,+∞) | D.(1,) |