题目内容

【题目】如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且 ,点C为圆O上一点,且 .点P在圆O所在平面上的正投影为点D,PD=BD.

(1)求证:CD⊥平面PAB;
(2)求点D到平面PBC的距离.

【答案】
(1)解:∵AB为圆O的直径,∴AC⊥CB,

∵Rt△ABC中,由 ,∴tan∠ABC= = ,∠ABC=30°,

∵AB=4,3AD=DB,∴DB=3,

由余弦定理,得△BCD中,CD2=DB2+BC2﹣2DBBCcos30°=3,

∴CD2+DB2=12=BC2,可得CD⊥AO.

∵点P在圆O所在平面上的正投影为点D,即PD⊥平面ABC,

又∵CD平面ABC,∴PD⊥CD,

∵PD∩AO=D得,∴CD⊥平面PAB


(2)解:由可知,PD=DB=3,且Rt△BCD中,

又∵

∴△PBC为等腰三角形,可得

设点D到平面PBC的距离为d,由VPBDC=VDPBC,得

,解之得


【解析】(1)由AB是圆的直径,得到AC⊥CB,结合BC= AC算出∠ABC=30°,进而得到 .△BCD中用余弦定理算出CD长,从而CD2+DB2=BC2 , 可得CD⊥AO.再根据PD⊥平面ABC,得到PD⊥CD,结合线面垂直的判定定理即可证出CD⊥平面PAB;(2)根据(1)中计算的结果,利用锥体体积公式算出 ,而VPBDC=VDPDC , 由此设点D到平面PBC的距离为d,可得 ,结合△PBC的面积可算出点D到平面PBC的距离.
【考点精析】通过灵活运用直线与平面垂直的判定,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网