题目内容
17.在△ABC中,已知a=1,b=$\sqrt{3}$,A=30°,则B等于60°或120°.分析 △ABC中由条件利用正弦定理求得sinB的值,确定出B的度数.
解答 解:∵在△ABC中,a=1,b=$\sqrt{3}$,A=30°,
∴由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$得到:$\frac{1}{sin30°}$=$\frac{\sqrt{3}}{sinB}$,
即:$\frac{1}{\frac{1}{2}}$=$\frac{\sqrt{3}}{sinB}$,
解得sinB=$\frac{\sqrt{3}}{2}$.
∵0<B<180°,
∴B=60°或B=120°.
故答案是:60°或120°.
点评 本题主要考查解三角形,利用正弦定理是解决本题的关键,比较基础.
练习册系列答案
相关题目
7.如果(x2-$\frac{1}{2x}$)n的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数和是( )
A. | 0 | B. | 256 | C. | 64 | D. | $\frac{1}{64}$ |
9.已知函数f(x)=-$\frac{1}{3}$x3+x2+(m2-1)x,(x∈R,m>0),若f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意x∈[x1,x2],f(x)>f(1)成立,则实数m的取值范围是( )
A. | $({\frac{1}{2},\frac{{\sqrt{3}}}{3}})$ | B. | $({0,\frac{{\sqrt{3}}}{3}})$ | C. | $({\frac{1}{2},1})$ | D. | $({\frac{{\sqrt{3}}}{3},1})$ |
6.若△ABC的三内角A、B、C对应的边分别是a、b、c,若a2+c2-b2=ac,则B=( )
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
7.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:吨)的影响,对近8年的年宣传费x1和年销售量yi(i=1,2,3,..8)数据作了初步处理,得到下面的散点图及一些统计量的值.
表中:w1=$\sqrt{{x}_{1}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)根据(Ⅱ)中的回归方程,求当年宣传费x=36千元时,年销售预报值是多少?
附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehat{β}$=$\frac{\sum_{i=1}^{8}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{8}({u}_{1}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
$\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)根据(Ⅱ)中的回归方程,求当年宣传费x=36千元时,年销售预报值是多少?
附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehat{β}$=$\frac{\sum_{i=1}^{8}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{8}({u}_{1}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.