题目内容
16.已知数列{an}满足anan+1=3n,n=1,2,3,…,且a1=1.(1)求证:当n≥2时,总有$\frac{{a}_{n+1}}{{a}_{n-1}}$=3;
(2)数列{bn}满足bn=$\left\{\begin{array}{l}{lo{g}_{3}{a}_{n},n为奇数}\\{\frac{1}{{a}_{n}},n为偶数}\end{array}\right.$,求{bn}的前2n项的和S2n.
分析 (1)当n≥2时,anan+1=3n,${a}_{n-1}{a}_{n}={3}^{n-1}$,两式相除即可证明;
(2)由anan+1=3n,且a1=1.可得a2=3.由(1)可得:数列{an}的奇数项与偶数项分别成等比数列,首项分别为1,3;公比都为3.分别利用等比数列的通项公式可得:a2n-1=3n-1,a2n=3n.可得a1a3…a2n-1=${3}^{\frac{n(n-1)}{2}}$.$\frac{1}{{a}_{2}}+\frac{1}{{a}_{4}}+…+\frac{1}{{a}_{2n}}$=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$,再利用等比数列的前n项和公式即可得出.
解答 (1)证明:当n≥2时,anan+1=3n,${a}_{n-1}{a}_{n}={3}^{n-1}$,∴$\frac{{a}_{n+1}}{{a}_{n-1}}$=3;
(2)解:∵anan+1=3n,且a1=1.
∴a2=3.
由(1)可得:数列{an}的奇数项与偶数项分别成等比数列,首项分别为1,3;公比都为3.
∴a2n-1=3n-1,a2n=3n.
∵bn=$\left\{\begin{array}{l}{lo{g}_{3}{a}_{n},n为奇数}\\{\frac{1}{{a}_{n}},n为偶数}\end{array}\right.$,
∴a1a3…a2n-1=30+1+…+(n-1)=${3}^{\frac{n(n-1)}{2}}$.
$\frac{1}{{a}_{2}}+\frac{1}{{a}_{4}}+…+\frac{1}{{a}_{2n}}$=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$.
∴{bn}的前2n项的和S2n=(log3a1+log3a3+…+log3a2n-1)+$(\frac{1}{{a}_{2}}+\frac{1}{{a}_{4}}+…+\frac{1}{{a}_{2n}})$
=log3(a1a3…a2n-1)+$(\frac{1}{{a}_{2}}+\frac{1}{{a}_{4}}+…+\frac{1}{{a}_{2n}})$
=$\frac{n(n-1)}{2}$+$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$.
点评 本题考查了分段数列的求和问题、等差数列与等比数列的通项公式及其前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.
A. | $f(x)=\sqrt{x^2}$,g(x)=x | B. | $f(x)=\sqrt{{x^2}-4},g(x)=\sqrt{x+2}\sqrt{x-2}$ | ||
C. | $f(x)=x,g(x)=\frac{x^2}{x}$ | D. | f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x-1}\end{array}\right.$ |
A. | $-\frac{5π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | $\frac{5π}{3}$ |