题目内容

【题目】已知数列{an}满足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n对任意n∈N*都成立,则实数λ的取值范围为

【答案】(﹣∞,﹣8]
【解析】解:∵a1=1,且an+1﹣an=2n,n∈N*,即n≥2时,an﹣an﹣1=2n﹣1

∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2n﹣1+2n﹣2+…+2+1= =2n﹣1.

+19≤3n,化为:λ≤ =f(n).

+19≤3n对任意n∈N*都成立,λ≤f(n)min

由f(n)≤0,可得n≤ ,因此n≤6时,f(n)<0;n≥7时,f(n)>0.

f(n+1)﹣f(n)= = ≤0,

解得n≤

∴f(1)>f(2)>f(3)>f(4)>f(5)<f(6),

可得f(n)min=f(5)=﹣8.

则实数λ的取值范围为(﹣∞,﹣8].

所以答案是:(﹣∞,﹣8].

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网