题目内容
【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且 ⊥ .
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.
【答案】
(1)解:∵ ⊥ .∴ =(c+a)(c﹣a)+b(b﹣c)=c2﹣a2+b2﹣bc=0,化为:c2+b2﹣a2=bc.
∴cosA= = ,A∈(0,π).
∴A= .
(2)解:由正弦定理可得: = = =2 ,
∴b=2 sinB,c=2 sinC,
∴a+b+c=3+2 (sinB+sinC)=3+2 (sinB+sinC)=3+2 (sin( )+sinC)
=6sin +3,
∵C∈ ,∴ ∈ ,
∴sin ∈ ,
∴a+b+c∈(6,9].
【解析】(1)由 ⊥ .可得 =(c+a)(c﹣a)+b(b﹣c)=0,化为:c2+b2﹣a2=bc.利用余弦定理即可得出.(2)由正弦定理可得: = = =2 ,b=2 sinB,c=2 sinC,利用和差公式可得:a+b+c=3+2 (sinB+sinC)=6sin +3,再利用三角函数的单调性值域即可得出.
练习册系列答案
相关题目
【题目】某种商品价格与该商品日需求量之间的几组对照数据如表:
价格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
参考公式:线性回归方程 ,其中 .
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?