题目内容
【题目】已知向量 =(2cosx, sinx), =(3cosx,﹣2cosx),设函数f(x)=
(1)求f(x)的最小正周期;
(2)若x∈[0, ],求f(x)的值域.
【答案】
(1)解:∵ =(2cosx, sinx), =(3cosx,﹣2cosx),
∴f(x)= =(2cosx, sinx)(3cosx,﹣2cosx)=
=6× =
= .
函数f(x)的最小正周期为T= ;
(2)解:∵x∈[0, ],∴2x﹣ ∈[﹣ ],
则sin(2x﹣ )∈[﹣ ].
∴f(x)的值域为[ ,6].
【解析】由已知向量的坐标结合数量积可得f(x)的解析式,再由辅助角公式化简.(1)直接利用周期公式求得f(x)的最小正周期;(2)由x的范围结合三角函数的单调性求得求f(x)的值域.
练习册系列答案
相关题目