题目内容
f (x)= (n∈Z)是偶函数,且y=f(x)在(0,+∞)上是减函数,则n=( ).
A.1 | B.2 | C.1或2 | D.3 |
C
试题分析:结合幂函数的性质可知,若f(x)=x(n∈Z)是偶函数且在(0,+∞)上是减函数,结合n2-3n为整数,可知,n2-3n<0,且n2-3n为偶数,可求.
:∵f(x)=x(n∈Z)是偶函数,且n2-3n为整数,∴n2-3n为偶数,又∵y=f(x)在(0,+∞)上是减函数,由幂函数的性质可知,n2-3n<0,即0<n<3
∵n∈Z,则n=1或n=2
当n=1时,n2-3n=-2符合题意;当n=2时,n2-3n=-2,符合题意
故n=1或n=2
故选C
点评:解答本题的关键是熟练掌握幂函数的性质并能灵活应用.注意幂函数的指数大于零,在第一象限内递增,小于零时,则递减。
练习册系列答案
相关题目