题目内容
【题目】如图,在以、、、、、为顶点的五面体中,平面平面,,四边形为平行四边形,且.
(1)求证:;
(2)若,,直线与平面所成角为,求平面与平面所成锐二面角的余弦值.
【答案】(1)见解析;(2).
【解析】试题分析:
(1)过作交于,连接,由面面垂直的性质可得平面,则.则,,为等腰直角三角形,据此可得平面,.
(2)以为坐标原点,建立如图所示的空间直角坐标系,由题设可得平面的法向量为,平面的法向量为,则锐二面角的余弦值为 .
试题解析:
(1)过作交于,连接,由平面平面,得平面,因此.
∴,,,
∴,∴,
由已知得为等腰直角三角形,因此,又,
∴平面,∴.
(2)∵,平面,平面,∴平面,
∵平面平面,∴,
由(1)可得,,两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,由题设可得,进而可得,,,,,,
设平面的法向量为,则,即,
可取,
设平面的法向量为,则,即,
可取,
则 ,
∴二面角的余弦值为.
练习册系列答案
相关题目