题目内容

已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有
(1);(2);(3).

试题分析:(1)抽象函数求在特殊点的值,一般用赋值法,令代入抽象函数可得,又因为,可得.(2)在定义域内求抽象函数最值,一般先判断函数单调性,再求比较定义域端点的函数值和极值点的大小.证明单调性可令,代入得进而得函数为增函数,最大值为
(3)在上证不等式,要分两段.在,所以.在,所以,进而得证.
试题解析:(1)令则有,所以有,有根据条件?可知,故.(也可令
方法一:设,则有,即为增函数(严格来讲为不减函数),所以,故.
方法二:不妨令,所以由?,即增函数(严格来讲为不减函数),所以,故.
(3)当,有,又由?可知,所以有对任意的恒成立.当,又由?可知,所以有对任意的恒成立.综上,对任意的时,恒有.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网