题目内容

【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)若对任意 恒成立,求实数m的最大值.

【答案】
(1)解:∵f(x)=xlnx,

∴f'(x)=lnx+1,

∴f'(x)>0有 ,∴函数f(x)在 上递增,f'(x)<0有

∴函数f(x)在 上递减,

∴f(x)在 处取得极小值,极小值为


(2)解:∵2f(x)≥﹣x2+mx﹣3

即mx≤2xlnx+x2+3,又x>0,

令h'(x)=0,解得x=1或x=﹣3(舍)

当x∈(0,1)时,h'(x)<0,函数h(x)在(0,1)上递减

当x∈(1,+∞)时,h'(x)>0,函数h(x)在(1,+∞)上递增,

∴h(x)min=h(1)=4.

∴m≤4,

即m的最大值为4.


【解析】(1)求函数的导数,利用函数单调性和极值之间的关系即可求f(x)的单调区间和极值;(2)利用不等式恒成立,进行参数分离,利用导数即可求出实数m的最大值.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网