题目内容

【题目】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y= (υ>0).
(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?

【答案】
(1)解:依题意,y= =

当且仅当v= ,即v=40时,上式等号成立,

∴ymax= (千辆/时).

∴如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25km/h且小于64km/h.当v=40km/h时,车流量最大,最大车流量约为 千辆/时


(2)解:由条件得 >10,

整理得v2﹣89v+1600<0,

即(v﹣25)(v﹣64)<0.解得25<v<64


【解析】(1)根据基本不等式性质可知y= = ,进而求得y的最大值.根据等号成立的条件求得此时的平均速度.(2)在该时间段内车流量超过10千辆/小时时,解不等式即可求出v的范围.
【考点精析】通过灵活运用基本不等式在最值问题中的应用,掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网