题目内容
(本小题满分12分)
设a为实数,函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814734917.png)
(I)求
的单调区间与极值;
(II)求证:当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814796717.png)
设a为实数,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814734917.png)
(I)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814749447.png)
(II)求证:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814765695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814796717.png)
(I)
的单调递减区间是
,单调递增区间是
,
极小值为
(II)见解析。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814749447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814827618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814859621.png)
极小值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008148741266.png)
试题分析: (1)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008148901472.png)
(2)构造函数设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008149211026.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814937959.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008149521738.png)
(I)解:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008149681477.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008149991650.png)
![]() | ![]() | ![]() | ![]() |
![]() | — | 0 | + |
![]() | 单调递减![]() | ![]() | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814749447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814827618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814859621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000815420693.png)
极小值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008154361295.png)
(II)证:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008155141041.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000814937959.png)
由(I)知当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008155291726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008157171832.png)
于是当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008158411777.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008158571313.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008158731063.png)
点评:解决该试题的关键是熟练掌握求解函数单调性的三步骤,并求函数的极值,进而得到函数的最值问题的运用。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目