题目内容
【题目】如图所示,在三棱锥中,底面,,,,为的中点.
(1)求证:;
(2)若二面角的大小为,求三棱锥的体积.
【答案】(1)见解析;(2).
【解析】
(1)由余弦定理求出BC,因为为的中点,得BD=CD,因为,平方求出AD,利用勾股定理得AB⊥AD,结合PA⊥AD,得AD⊥平面PAB,从而AD⊥PB得证.
(2)分别以直线AB,AD,AP为x轴,y轴,z轴建立空间直角坐标系,设PA=a,求出平面PBC的法向量,平面PAB的法向量,利用向量法求出a,然后求解VP﹣ABC=×S△ABC×PA即可.
(1)在中,由余弦定理得,则.
因为为的中点,则.
因为,则
,所以.
因为,则.
因为底面,则,所以平面,从而.
(2)分别以直线,,为轴,轴,轴建立空间直角坐标系,如图所示.
设,则点,,,所以,.
设平面的法向量为,则,即,
取,则,,所以.
因为为平面的法向量,
则,即.
所以,解得,所以.
所以.
【题目】郑州一中社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图:将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望
附:,
0.05 | 0.01 | |
3.841 | 6.635 |
【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数(单位:人)与时间(单位:年)的数据,列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式 ,参考数据.
(2)建立关于的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).
(参考公式: ,)