题目内容
18.根据科学研究人的身高是具有遗传性的,唐三的身高为1.90m,他的爷爷的身高1.70m,他的父亲的身高为1.80m,他的儿子唐东的身高为1.90m,(1)请根据以上数据画出父(x)子(y)身高的散点图;
(2)根据父(x)子(y)身高的数据,用最小二乘法求出y关于x的线性回归方程y=$\widehat{b}x$+$\stackrel{∧}{a}$;
(3)试根据(2)求出的线性回归方程,预测唐三的孙子唐雨浩将来的身高.
(用最小二乘法求线性回归方程系数公式$\widehat{b}=\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i-1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
分析 (1)根据已知中的数据,可得父(x)子(y)身高的散点图;
(2)根据父(x)子(y)身高的数据,用最小二乘法求出回归系数,可得y关于x的线性回归方程y=$\widehat{b}x$+$\stackrel{∧}{a}$;
(3)试根据(2)求出的线性回归方程,将x=1.9代入可预测唐三的孙子唐雨浩将来的身高.
解答 解:(1)由已知中的数据可得父(x)子(y)身高的散点图如下图所示:
(2)由已知可得:$\overline{x}=1.8,\overline{y}=1.88,\sum_{i=1}^4{{x_i}{y_i}=10.166,\sum_{i=1}^4{{x_i}^2}}=9.74$,
∴$\hat b=\frac{0.014}{0.02}=0.7$,
$\hat a=0.62$,
故回归方程$\hat{y}$=0.7x+0.62,
(3)由(2)$\hat{y}$=0.7x+0.62可得:
当x=1.9时,$\hat{y}$=1.95m,
故预测唐三的孙子唐雨浩将来的身高约为1.95m.
点评 本题考查的知识点是回归分析,回归方程,熟练掌握最小二乘法的计算步骤,是解答的关键.
练习册系列答案
相关题目
6.某商店经营一批进价为每件4元的商品,在市场调查时发现,此商品的销售单价x与日销售量y之间有如下关系:
(1)求相关系数.并以此判断销售单价与日销售量之间具有怎样的线性相关关系?
(2)求x,y之间的线性回归方程;
(3)估计销售单价为多少元时,日利润最大?
(参考数据:$\sum_{i=1}^4{{x_i}{y_i}-4\overline x\overline y}$=-11,$\sum_{i=1}^4{x_i^2-4{{(\overline x)}^2}}$=5,$\sum_{i=1}^4{y_i^2-4{{(\overline y)}^2}}$=26)
用最小二乘法求线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}{y}_{i}^{2}-n(\overline{y})^{2}}}$.
x | 5 | 6 | 7 | 8 |
y | 10 | 8 | 7 | 3 |
(2)求x,y之间的线性回归方程;
(3)估计销售单价为多少元时,日利润最大?
(参考数据:$\sum_{i=1}^4{{x_i}{y_i}-4\overline x\overline y}$=-11,$\sum_{i=1}^4{x_i^2-4{{(\overline x)}^2}}$=5,$\sum_{i=1}^4{y_i^2-4{{(\overline y)}^2}}$=26)
用最小二乘法求线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}{y}_{i}^{2}-n(\overline{y})^{2}}}$.
13.某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高不超过175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长不超过42码”的为“非大脚”.
请根据上表数据完成下面的2×2列联表:
(Ⅱ)根据(1)中表格的数据,你能否有99%的把握认为脚的大小与身高有关系?
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
身高x(cm) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
脚长(码) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 49 | 46 | 39 |
序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
身高x(cm) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
脚长y(码) | 42 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
请根据上表数据完成下面的2×2列联表:
高个 | 非高个 | 合计 | |
大脚 | |||
非大脚 | 12 | ||
合计 | 20 |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |