题目内容
【题目】已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.
(1)证明:点始终在直线上且;
(2)求四边形的面积的最小值.
【答案】(1)见解析(2)最小值为32.
【解析】
(1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.
(2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值.
(1)∵动圆过定点,且与直线相切,∴动圆圆心到定点和定直线的距离相等,∴动圆圆心的轨迹是以为焦点的抛物线,∴轨迹的方程为:,
设,∴直线的方程为:,即:①,同理,直线的方程为:②,
由①②可得:,
直线方程为:,联立可得:,
,∴点始终在直线上且;
(2)设直线的倾斜角为,由(1)可得:,
,
∴四边形的面积为:,当且仅当或,即时取等号,∴四边形的面积的最小值为32.
练习册系列答案
相关题目