题目内容
【题目】求出下列函数的定义域,并判断函数的奇偶性:
(1);(2);
(3);(4).
【答案】(1)定义域为,偶函数;(2)定义域为R,既不是奇函数,也不是偶函数;(3)定义域为R,奇函数;(4)定义域为,既不是奇函数,也不是偶函数.
【解析】
(1)根据指数幂的运算公式化简函数的解析式,求出函数的定义域,然后利用函数的奇偶性的定义进行判断即可;
(2)根据分数指数幂和根式的转化公式化简函数的解析式,求出函数的定义域,然后利用函数的奇偶性的定义进行判断即可;
(3)根据分数指数幂和根式的转化公式化简函数的解析式,求出函数的定义域,然后利用函数的奇偶性的定义进行判断即可;
(4)根据分数指数幂和根式的转化公式化简函数的解析式,求出函数的定义域,然后利用函数的奇偶性的定义进行判断即可.
解:(1)的定义域为.
,
是偶函数;
(2)的定义域为R.
,
.
既不是奇函数,也不是偶函数;
(3)的定义域为R.
,
是奇函数;
(4)的定义域为,
既不是奇函数,也不是偶函数.
【题目】已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眼的时间,数据如下表(单位:小时)
甲部门 | 6 | 7 | 8 | |||
乙部门 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部门 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求该单位乙部门的员工人数?
(2)若将每天睡眠时间不少于7小时视为睡眠充足,现从该单位任取1人,估计拍到的此人为睡眠充足者的概率;
(3)再从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眼时间的概率.
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 | 保留 | 不支持 | |
岁以下 | |||
岁以上(含岁) |
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求至少有一人年龄在岁以下的概率.
(3)在接受调查的人中,有人给这项活动打出的分数如下: , , , , , , , , , ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.
【题目】宁德市某汽车销售中心为了了解市民购买中档轿车的意向,在市内随机抽取了100名市民为样本进行调查,他们月收入(单位:千元)的频数分布及有意向购买中档轿车人数如下表:
月收入 | [3,4) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
频数 | 6 | 24 | 30 | 20 | 15 | 5 |
有意向购买中档轿车人数 | 2 | 12 | 26 | 11 | 7 | 2 |
将月收入不低于6千元的人群称为“中等收入族”,月收入低于6千元的人群称为“非中等收入族”.
(Ⅰ)在样本中从月收入在[3,4)的市民中随机抽取3名,求至少有1名市民“有意向购买中档轿车”的概率.
(Ⅱ)根据已知条件完善下面的2×2列联表,并判断有多大的把握认为有意向购买中档轿车与收入高低有关?
非中等收入族 | 中等收入族 | 总计 | |||||
有意向购买中档轿车人数 | 40 | ||||||
无意向购买中档轿车人数 | 20 | ||||||
总计 | 100 | ||||||
0.10 | 0.05 | 0.010 | 0.005 | ||||
2.706 | 3.841 | 6.635 | 7.879 | ||||
附: