题目内容
【题目】2019年11月11日是石室中学周年校庆日,学校数学爱好者社团组织“解题迎校庆,我爱”的活动.其中一题如下:已知数列,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推.若该数列前项和为,则求满足,且是的倍数条件的整数的个数为( )
A. 10B. 12C. 21D. 60
【答案】A
【解析】
本题考查数列的应用,等差数列与等比数列的前项和。将已知数列分组,使每组第一项均为1,即:,,,,利用等比数列前项和公式,可得答案
将已知数列分组,使每组第一项均为1,
即:,,,,
根据等比数列前项和公式,
求得每项和分别为:,,,,,
每项含有的项数为:1,2,3,,,
总共的项数为,
所有项数的和为
,
当时,成立,N=15,
当时,成立, N=55
,,所以多出的6项符合。
综上所述,,故满足条件的N可表示为,共10个,选A.
【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.
(1) 依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01)(若,则线性相关程度很高,可用线性回归模型拟合)
(2) 蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:
周光照量(单位:小时) | |||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?
附:相关系数,参考数据:,,,