题目内容
如图所示,已知A,B分别为椭圆+=1(a>b>0)的右顶点和上顶点,直线l∥AB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积kCE·kDF等于( )
A.± | B.± |
C.± | D.± |
C
由+=1(a>b>0)可知A(a,0),B(0,b),
∴kAB=.
设l方程为y=-x+m,
则C,D(0,m).
DF方程为y=kDFx+m,
由
得(b2+a2)x2+2a2mkDFx+a2m2-a2b2=0,
∵DF与椭圆相切,
∴Δ=(2a2mkDF)2-4(b2+a2)·(a2m2-a2b2)=0,
得=.
直线CE的方程为y=kCE(x-),
由
得(b2+a2)x2-x+-a2b2=0.
∵CE与椭圆相切,
∴Δ=(-)2-4(b2+a2)·(-a2b2)=0.
化简得=.
∴·=·
=,
∴kDF·kCE=±.
∴kAB=.
设l方程为y=-x+m,
则C,D(0,m).
DF方程为y=kDFx+m,
由
得(b2+a2)x2+2a2mkDFx+a2m2-a2b2=0,
∵DF与椭圆相切,
∴Δ=(2a2mkDF)2-4(b2+a2)·(a2m2-a2b2)=0,
得=.
直线CE的方程为y=kCE(x-),
由
得(b2+a2)x2-x+-a2b2=0.
∵CE与椭圆相切,
∴Δ=(-)2-4(b2+a2)·(-a2b2)=0.
化简得=.
∴·=·
=,
∴kDF·kCE=±.
练习册系列答案
相关题目