搜索
题目内容
若椭圆
上有
个不同的点
为右焦点,
组成公差
的等差数列,则
的最大值为( )
A.199
B.200
C.99
D.100
试题答案
相关练习册答案
B
试题分析:椭圆上的点到右焦点最大距离为:a+c=3,到右焦点最小距离是a-c=1,2=(n-1)d,要使
,且n最大,有d=
,由此能求出n的最大值.
练习册系列答案
名师面对面中考满分特训方案系列答案
名师名卷单元月考期中期末系列答案
初中总复习教学指南系列答案
全程导航初中总复习系列答案
中考分类必备全国中考真题分类汇编系列答案
中考分类集训系列答案
中考复习导学案系列答案
中考复习信息快递系列答案
中考复习指导基础训练稳夺高分系列答案
中考攻略系列答案
相关题目
设定圆
,动圆
过点
且与圆
相切,记动圆
圆心
的轨迹为
.
(1)求轨迹
的方程;
(2)已知
,过定点
的动直线
交轨迹
于
、
两点,
的外心为
.若直线
的斜率为
,直线
的斜率为
,求证:
为定值.
平面内与两定点
、
(
)连线的斜率之积等于非零常数m的点的轨迹,加上
、
两点所成的曲线C可以是圆、椭圆或双曲线.求曲线C的方程,并讨论C的形状与m值得关系.
过椭圆
的左顶点
作斜率为2的直线,与椭圆的另一个交点为
,与
轴的交点为
,已知
.
(1)求椭圆的离心率;
(2)设动直线
与椭圆有且只有一个公共点
,且与直线
相交于点
,若
轴上存在一定点
,使得
,求椭圆的方程.
已知椭圆C:
+
=1(a>b>0).
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程.
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)过原点O任意作两条互相垂直的直线与椭圆
+
=1(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.
已知双曲线
的焦点与椭圆
的焦点重合,且该椭圆的长轴长为
,
是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点
满足:
,直线
与
的斜率之积为
,求证:存在定点
,
使得
为定值,并求出
的坐标;
(3)若
在第一象限,且点
关于原点对称,点
在
轴的射影为
,连接
并延长交椭圆于
点
,求证:以
为直径的圆经过点
.
如图所示,已知A,B分别为椭圆
+
=1(a>b>0)的右顶点和上顶点,直线l∥AB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积k
CE
·k
DF
等于( )
A.±
B.±
C.±
D.±
设椭圆C:
+
=1(a>b>0)的左、右焦点分别为F
1
,F
2
,P是C上的点,PF
2
⊥F
1
F
2
,∠PF
1
F
2
=30°,则C的离心率为( )
A.
B.
C.
D.
已知椭圆E:
+
=1(a>b>0)的离心率e=
,a
2
与b
2
的等差中项为
.
(1)求椭圆E的方程.
(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总