ÌâÄ¿ÄÚÈÝ
8£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²O£ºx2+y2=1£¬PΪֱÏßl£ºx=t£¨1£¼t£¼2£©ÉÏÒ»µã£®£¨1£©ÒÑÖªt=$\frac{4}{3}$£®
¢ÙÈôµãPÔÚµÚÒ»ÏóÏÞ£¬ÇÒOP=$\frac{5}{3}$£¬Çó¹ýµãPµÄÔ²OµÄÇÐÏß·½³Ì£»
¢ÚÈô´æÔÚ¹ýµãPµÄÖ±Ïß½»Ô²OÓÚµãA£¬B£¬ÇÒBǡΪÏ߶ÎAPµÄÖе㣬ÇóµãP×Ý×ø±êµÄÈ¡Öµ·¶Î§£»
£¨2£©ÉèÖ±ÏßlÓëxÖá½»ÓÚµãM£¬Ï߶ÎOMµÄÖеãΪQ£¬RΪԲOÉÏÒ»µã£¬ÇÒRM=1£¬Ö±ÏßRMÓëÔ²O½»ÓÚÁíÒ»µãN£¬ÇóÏ߶ÎNQ³¤µÄ×îСֵ£®
·ÖÎö £¨1£©¢ÙÉèµãPµÄ×ø±êΪ£¨$\frac{4}{3}$£¬y0£©£¨y0£¾0£©£¬ÀûÓÃOP=$\frac{5}{3}$£¬¼°£¨$\frac{4}{3}$£©2+y02=£¨$\frac{5}{3}$£©2£¬¿É½âµÃy0=1£®Ò×Öª¹ýµãPµÄÔ²OµÄÇÐÏßµÄбÂʱشæÔÚ£¬¿ÉÉèÇÐÏßµÄбÂÊΪk£¬ÇÐÏßΪy-1=k£¨x-$\frac{4}{3}$£©£¬ÀûÓõ㵽ֱÏß¼äµÄ¾àÀ빫ʽ¿ÉµÃ$\frac{|1-\frac{4}{3}k|}{\sqrt{1+{k}^{2}}}$=1£¬½âµÃk=0»òk=$\frac{24}{7}$£¬´Ó¶ø¿ÉµÃ¹ýµãPµÄÔ²OµÄÇÐÏß·½³Ì£®
¢ÚÉèA£¨x£¬y£©£¬ÔòB£¨$\frac{x+\frac{4}{3}}{2}$£¬$\frac{y+{y}_{0}}{2}$£©£¬ÀûÓõãA¡¢B¾ùÔÚÔ²OÉÏ£¬¿ÉµÃ$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\£¨{\frac{x+\frac{4}{3}}{2}£©}^{2}+£¨{\frac{y+{y}_{0}}{2}£©}^{2}=1\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\£¨x+\frac{4}{3}£©^{2}+£¨{y+{y}_{0}£©}^{2}=4\end{array}\right.$£¬¸Ã·½³Ì×éÓн⣬¼´Ô²x2+y2=1ÓëÔ²£¨x+$\frac{4}{3}$£©2+£¨y+y0£©2=4Óй«¹²µã£¬¼Ì¶ø¿ÉµÃµãP×Ý×ø±êµÄÈ¡Öµ·¶Î§£»
£¨2£©ÉèR£¨x2£¬y2£©£¬Ôò$\left\{\begin{array}{l}{{x}_{2}}^{2}+{{y}_{2}}^{2}=1\\£¨{x}_{2}-t£©^{2}+{{y}_{2}}^{2}=1\end{array}\right.$£¬½âµÃx2=$\frac{t}{2}$£¬${{y}_{2}}^{2}$=1-$\frac{{t}^{2}}{4}$£¬ÓÚÊǿɵÃÖ±ÏßRMµÄ·½³ÌΪ£º-$\frac{2{y}_{2}}{t}$£¨x-t£©£¬ÓëÔ²µÄ·½³Ìx2+y2=1ÁªÁ¢£¬¿ÉÇóµÃNµãºá×ø±êΪ$\frac{t£¨3-{t}^{2}£©}{2}$£¬¼Ì¶ø¿ÉµÃNQµÄ±í´ïʽ£¬¿ÉÇóµÃÏ߶ÎNQ³¤µÄ×îСֵ£®
½â´ð ½â£º£¨1£©¢ÙÉèµãPµÄ×ø±êΪ£¨$\frac{4}{3}$£¬y0£©£¬ÒòΪOP=$\frac{5}{3}$£¬ËùÒÔ£¨$\frac{4}{3}$£©2+y02=£¨$\frac{5}{3}$£©2£¬½âµÃy0=¡À1£®
ÓÖµãPÔÚµÚÒ»ÏóÏÞ£¬ËùÒÔy0=1£¬¼´µãPµÄ×ø±êΪ£¨$\frac{4}{3}$£¬1£©£¬Ò×Öª¹ýµãPµÄÔ²OµÄÇÐÏßµÄбÂʱشæÔÚ£¬¿ÉÉèÇÐÏßµÄбÂÊΪk£¬
ÔòÇÐÏßΪy-1=k£¨x-$\frac{4}{3}$£©£¬¼´kx-y+1-$\frac{4}{3}$k=0£¬ÓÚÊÇÓÐ$\frac{|1-\frac{4}{3}k|}{\sqrt{1+{k}^{2}}}$=1£¬½âµÃk=0»òk=$\frac{24}{7}$£®
Òò´Ë¹ýµãPµÄÔ²OµÄÇÐÏß·½³ÌΪ£ºy=1»ò24x-7y-25=0£®
¢ÚÉèA£¨x£¬y£©£¬ÔòB£¨$\frac{x+\frac{4}{3}}{2}$£¬$\frac{y+{y}_{0}}{2}$£©£¬ÒòΪµãA¡¢B¾ùÔÚÔ²OÉÏ£¬ËùÒÔÓÐ$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\£¨{\frac{x+\frac{4}{3}}{2}£©}^{2}+£¨{\frac{y+{y}_{0}}{2}£©}^{2}=1\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\£¨x+\frac{4}{3}£©^{2}+£¨{y+{y}_{0}£©}^{2}=4\end{array}\right.$£®
¸Ã·½³Ì×éÓн⣬¼´Ô²x2+y2=1ÓëÔ²£¨x+$\frac{4}{3}$£©2+£¨y+y0£©2=4Óй«¹²µã£®
ÓÚÊÇ1¡Ü$\sqrt{\frac{16}{9}+{{y}_{0}}^{2}}$¡Ü3£¬½âµÃ-$\frac{\sqrt{65}}{3}$¡Üy0¡Ü$\frac{\sqrt{65}}{3}$£¬¼´µãP×Ý×ø±êµÄÈ¡Öµ·¶Î§ÊÇ[-$\frac{\sqrt{65}}{3}$£¬$\frac{\sqrt{65}}{3}$]£®
£¨2£©ÉèR£¨x2£¬y2£©£¬Ôò$\left\{\begin{array}{l}{{x}_{2}}^{2}+{{y}_{2}}^{2}=1\\£¨{x}_{2}-t£©^{2}+{{y}_{2}}^{2}=1\end{array}\right.$£¬½âµÃx2=$\frac{t}{2}$£¬${{y}_{2}}^{2}$=1-$\frac{{t}^{2}}{4}$£®
Ö±ÏßRMµÄ·½³ÌΪ£º-$\frac{2{y}_{2}}{t}$£¨x-t£©£®
ÓÉ$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=1\\ y=-\frac{2{y}_{2}}{t}£¨x-t£©\end{array}\right.$¿ÉµÃNµãºá×ø±êΪ$\frac{t£¨3-{t}^{2}£©}{2}$£¬
ËùÒÔNQ=$\sqrt{{£¨\frac{2t-{t}^{3}}{2}£©}^{2}+1-{£¨\frac{3t-{t}^{3}}{2}£©}^{2}}$=$\frac{1}{2}$$\sqrt{2{t}^{4}-5{t}^{2}+4}$£¬ËùÒÔµ±t2=$\frac{5}{4}$£¬¼´t=$\frac{\sqrt{5}}{2}$ʱ£¬NQ×îСΪ$\frac{\sqrt{14}}{8}$£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÔ²µÄ·½³ÌµÄ×ÛºÏÓ¦Ó㬿¼²éµãµ½Ö±Ïß¼äµÄ¾àÀ빫ʽ¡¢Ö±Ïߵĵãбʽ·½³Ì£¬Í»³ö¿¼²é·½³Ì˼ÏëÓë×ÛºÏÔËËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | ?n¡ÊN*£¬f£¨n£©∉N*ÇÒf£¨n£©£¾n | B£® | ?n¡ÊN*£¬f£¨n£©∉N*»òf£¨n£©£¾n | ||
C£® | ?n0¡ÊN*£¬f£¨n0£©∉N*ÇÒf£¨n0£©£¾n0 | D£® | ?n0¡ÊN*£¬f£¨n0£©∉N*»òf£¨n0£©£¾n0 |
¼× | ÒÒ | ±û | ¶¡ | |
100 | ¡Ì | ¡Á | ¡Ì | ¡Ì |
217 | ¡Á | ¡Ì | ¡Á | ¡Ì |
200 | ¡Ì | ¡Ì | ¡Ì | ¡Á |
300 | ¡Ì | ¡Á | ¡Ì | ¡Á |
85 | ¡Ì | ¡Á | ¡Á | ¡Á |
98 | ¡Á | ¡Ì | ¡Á | ¡Á |
£¨2£©¹À¼Æ¹Ë¿ÍÔڼס¢ÒÒ¡¢±û¡¢¶¡ÖÐͬʱ¹ºÂò3ÖÖÉÌÆ·µÄ¸ÅÂÊ£»
£¨3£©Èç¹û¹Ë¿Í¹ºÂòÁ˼ף¬Ôò¸Ã¹Ë¿Íͬʱ¹ºÂòÒÒ¡¢±û¡¢¶¡ÖÐÄÄÖÖÉÌÆ·µÄ¿ÉÄÜÐÔ×î´ó£¿
A£® | $\frac{1}{3}+¦Ð$ | B£® | $\frac{2}{3}+¦Ð$ | C£® | $\frac{1}{3}+2¦Ð$ | D£® | $\frac{2}{3}+2¦Ð$ |