题目内容
14.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为5.分析 由题意可得首项的方程,解方程可得.
解答 解:设该等差数列的首项为a,
由题意和等差数列的性质可得2015+a=1010×2
解得a=5
故答案为:5
点评 本题考查等差数列的基本性质,涉及中位数,属基础题.
练习册系列答案
相关题目
5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0)的一条渐近线过点(2,$\sqrt{3}$),且双曲线的一个焦点在抛物线y2=4$\sqrt{7}$x的准线上,则双曲线的方程为( )
A. | $\frac{{x}^{2}}{21}$-$\frac{{y}^{2}}{28}$=1 | B. | $\frac{{x}^{2}}{28}$-$\frac{{y}^{2}}{21}$=1 | C. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 |