题目内容

17.命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是(  )
A.?n∈N*,f(n)∉N*且f(n)>nB.?n∈N*,f(n)∉N*或f(n)>n
C.?n0∈N*,f(n0)∉N*且f(n0)>n0D.?n0∈N*,f(n0)∉N*或f(n0)>n0

分析 根据全称命题的否定是特称命题即可得到结论.

解答 解:命题为全称命题,
则命题的否定为:?n0∈N*,f(n0)∉N*或f(n0)>n0
故选:D.

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关题目
9.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

$\overline{x}$$\overline{y}$$\overline{w}$$\sum _{i=1}^{8}$(xi-$\overline{x}$)2$\sum _{i=1}^{8}$(wi-$\overline{w}$)2$\sum _{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum _{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中wi=$\sqrt{x}$i,$\overline{w}$=$\frac{1}{8}$$\sum _{i=1}^{8}w{\;}_{i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{n}({u}_{1}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网