题目内容
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点, 轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线(为参数)与曲线相交于两点.
(1)试写出曲线的直角坐标方程和直线的普通方程;
(2)求的值.
【答案】(1). .(2)1.
【解析】试题分析:(1)第(1)问,直接利用极坐标和直角坐标互化的公式写出曲线C的直角坐标方程,直接消去参数t得到直线的普通方程. (2)第(2)问,利用直线参数方程中t的几何意义和韦达定理解答.
试题解析:
(1)由已知有,又,
所以曲线的直角坐标方程为: ,即.
由直线的参数方程消去参数,得直线的普通方程为: .
(2)将参数方程代入方程,整理得,
则.
所以,由直线方程参数得几何意义知: .
练习册系列答案
相关题目