题目内容
【题目】(2017·黄冈质检)如图,在棱长均为2的正四棱锥P-ABCD中,点E为PC的中点,则下列命题正确的是( )
A. BE∥平面PAD,且BE到平面PAD的距离为
B. BE∥平面PAD,且BE到平面PAD的距离为
C. BE与平面PAD不平行,且BE与平面PAD所成的角大于30°
D. BE与平面PAD不平行,且BE与平面PAD所成的角小于30°
【答案】D
【解析】
连接AC,BD,交点为O,连接OP,以O为坐标原点,OC,OD,OP所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,由正四棱锥P-ABCD的棱长均为2,点E为PC的中点,知A(-,0,0),B(0,- ,0),C(,0,0),D(0, ,0),P(0,0, ),E,则 =, =(-,0,- ), =(0, ,- ),设m=(x,y,z)是平面PAD的法向量,则m⊥,且m⊥,即,令x=1,则z=-1,y=-1,m=(1,-1,-1)是平面PAD的一个法向量,设BE与平面PAD所成的角为θ,则sinθ=,故BE与平面PAD不平行,且BE与平面PAD所成的角小于30°,故选D.
练习册系列答案
相关题目