题目内容
求经过直线2x+3y+1=0和x-3y+4=0的交点,且垂直于直线3x+4y-7=0的直线方程.
4x-3y+9=0.
解析
已知三角形的三个顶点是A(4,0),B(6,6),C(0,2).(1)求AB边上的高所在直线的方程;(2)求AC边上的中线所在直线的方程.
直线L经过点,且被两直线L1:和 L2:截得的线段AB中点恰好是点P,求直线L的方程.
求直线a:2x+y-4=0关于直线l:3x+4y-1=0对称的直线b的方程.
设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.
已知实数x、y满足(x-2)2+(y-1)2=1,求z=的最大值与最小值.
在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为,求圆P的方程.
(1)平面过坐标原点,是平面的一个法向量,求到平面的距离;(2)直线过,是直线的一个方向向量,求到直线的距离.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系xoy的原点为极点,OX为极轴,且长度单位相同,建立极坐标系,直线l的极坐标方程为 ρsin(θ+)="0," 求与直线l垂直且与曲线C相切的直线m的极坐标方程.