题目内容
【题目】已知定义在R上的函数f(x)满足 为常数
(1)求函数f(x)的表达式;
(2)如果f(x)为偶函数,求a的值;
(3)当f(x)为偶函数时,若方程f(x)=m有两个实数根x1,x2;其中x1<0,0<x2<1;求实数m的范围.
【答案】(1)f(x)=2﹣x+a2x;(2)1(3)
【解析】解:(1)f(x)=x+,a是常数,令t=x,则x=,
∴f(t)==2﹣t+a2t 从而有f(x)=2﹣x+a2x;
(2)∵f(x)为偶函数,∴f(﹣x)=f(x)
∴2x+a2﹣x=2﹣x+a2x整理可得,(a﹣1)2x=(a﹣1)2﹣x
∴a=1
(3)由(2)可得f(x)为偶函数,a=1,f(x)=2x+2﹣x
令n=2x,n>0,f(n)=n+,n>0的图象如图,
结合图象可得方程f(x)=m有两个实数根x1,x2,
其中x1<0,0<x2<1f(n)=m有两个实数根n1,n2其中0<n1<1,1<n2<2
而函数f(n)=n+在(0,1)上单调递减,在(1,2)单调递增
结合图象可得,函数有两个交点
练习册系列答案
相关题目