题目内容
设各项都是正整数的无穷数列
满足:对任意
,有
.记
.
(1)若数列
是首项
,公比
的等比数列,求数列
的通项公式;
(2)若
,证明:
;
(3)若数列
的首项
,
,
是公差为1的等差数列.记
,
,问:使
成立的最小正整数
是否存在?并说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146665527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146680483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146696532.png)
(1)若数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146712371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146727410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146743487.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146758528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146774417.png)
(3)若数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146712371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146805548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146821445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146836609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146852828.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146868781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146883297.png)
(1)
;(2)参考解析;(3)存在5
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146899625.png)
试题分析:(1)由于数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146712371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146727410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146992870.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146680483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146743487.png)
(2)由于各项都是正整数的无穷数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146712371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147086756.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147117490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147133542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147148959.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147195610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441472111064.png)
(2)根据反证法排除
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146712371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147086756.png)
证明:假设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147258447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147273564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146712371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147086756.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146712371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147195610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147398430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147414414.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147086756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147445670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147460487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146680483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147492410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147086756.png)
由①②可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146774417.png)
(3)首先
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
证明如下:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147117490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147570702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147585479.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147601528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147616844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147632828.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147663986.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147663603.png)
由题设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147679538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147694539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147710539.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146649480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146712371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147757469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441477721049.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441477881015.png)
两式相减得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147804985.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147819611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147835759.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146868781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147850545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147897414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147913692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044146868781.png)
注:也可以归纳猜想后用数学归纳法证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044147757469.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目